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The topological structure of vortex in BEC
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Abstract. We find that there exists an elementary topological current in Bose-Einstein condensation. Based
on the φ-mapping topological current theory, the implicit function theorem and the Taylor expansion, the
topological structure of vortex lines is detailed in the neighborhoods of the bifurcation points of the
condensate wave function.

PACS. 03.75.Fi Phase coherent atomic ensemble (Bose condensation) – 02.40.Pc General topology

1 Introduction

An important consequence of quantum statistics is that,
below some critical temperature, bosons are predicted
to the ground state [1]. This macroscopic quantum phe-
nomenon, termed Bose-Einstein condensation (BEC), has
recently been observed in a dilute atomic vapor [2,3]. Vor-
tex states which are well-known in superfluid and super-
conductor also play an important role in characterizing
the superfluid properties of BEC systems [4–6]. In this
paper, it is found that in BEC, the vorticity is just the
topological current constructed by the condensate wave
function. Using the φ-mapping topological current the-
ory [7], we obtain the intrinsic relation between vorticity
and condensate wave function as well as the topological
structure of vorticity. We also found that there exists the
crucial case of branch process. The vortex lines cross, split
or merge at the bifurcation points.

2 The intrinsic relation between vorticity
and condensate wave function

Several important conclusions about the properties of
BEC can be drawn simply from the existence of a macro-
scopic quantity, the condensate wave function Ψ . The cur-
rent j0 is characterized by the condensate wave function
Ψ [8]:

j0 = −i~(Ψ∗∇Ψ − Ψ∇Ψ∗)/2
i.e.

j0 = m | Ψ |2 V, (1)

where the definition of velocity V is

V = −
i~
2m

(Ψ∗∇Ψ − Ψ∇Ψ∗)/ | Ψ |2 . (2)
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If we denote the wave function

Ψ =| Ψ | eiΘ, (3)

the velocity V can be written as

V =
~
m
∇Θ (4)

from which the definition of the velocity potential Θ came.
It is well-known that the condensate wave function

Ψ(x), which is like the Schrödinger wave function, can
be looked upon as a section of a complex line bundle with
base manifold R3 [9]. Denote the wave function Ψ(x) as

Ψ(x) = Φ1(x) + iΦ2(x), (5)

where Φ1(x) and Φ2(x) are two components of a two di-
mensional vector field

Φ = (Φ1, Φ2) (6)

on R3. In our viewpoints, the topology of BEC should
be determined by the intrinsic topology character of the
section of this line bundle. From equation (2) one can
prove that

V = −
~
m
εab∇n

anb = −
~
m
εab∂kn

anbek

and the vorticity

∇×V =
~
m

ei(ε
ijkεab∂jn

a∂kn
b) (7)

where ek (k = 1, 2, 3) are the base vectors in Cartesian
coordinate system, and na is a two dimensional unit vector
field

n = Φ/ ‖ Φ ‖, (8)
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where
‖ Φ ‖2= ΦaΦa =| Ψ |2 .

From equation (8), it is easy to see that the zeroes of
the wave function Ψ(x) are just the singularities of n(x).
Using the two dimensional unit vector field (8), one can
construct a topological current of wave function:

J i =
1

2π
εijkεab∂jn

a∂kn
b,

which is the special case of the φ-mapping topological cur-
rent theory [7]. One can see that

∂iJ
i = 0, (9)

which is the continuity equation for the condensate. So
that equation (7) is turned into

∇×V =
h

m
J iei. (10)

Therefore in BEC the vorticity ∇×V can be expressed in
terms of the topological current of wave function. Using
equation (8) and

∂in
a =

∂iΦ
a

‖Φ‖
−
Φa∂i‖Φ‖

‖Φ‖2
,

∂

∂Φa
ln ‖Φ‖ =

Φa

‖Φ‖2
,

J i is changed into

J i =
1

2π
εijkεab

∂

∂Φc
∂

∂Φa
ln ‖Φ‖∂jΦ

a∂kΦ
b.

By defining the vector Jacobian of Φ:

Di

(
Φ

x

)
=

1

2
εijkεab∂jΦ

a∂kΦ
b, (11)

and making use of Laplacian relation in φ space

∂

∂Φa
∂

∂Φa
ln ‖Φ‖ = 2πδ2(Φ),

we do obtain the δ like topological current

J i = δ2(Φ)Di

(
Φ

x

)
. (12)

Thus we have the important relation between vorticity
and condensate wave function in BEC:

∇×V =
h

m
δ2(Φ)D

(
Φ

x

)
, (13)

where

D

(
Φ

x

)
= Di

(
Φ

x

)
ei. (14)

From equation (13), we see that the vorticity ∇×V does
not vanish at the zero points of Φ, i.e.

Φ1(x, y, z) = 0, Φ2(x, y, z) = 0. (15)

The solutions of equation (15) are generally expressed as

x = xi(l), y = yi(l), z = zi(l) i = 1, 2, . . . , N (16)

which represent N singular string Li(i = 1, 2, . . . , N)
where Φ = 0 in space. The location and the direction
of the ith vortex are determined by the ith singular string
Li and the vector Jacobian D (Φ/x) on Li respectively.
When the vector field Φ, i.e., the wave function Ψ , has no
zero values, δ2(Φ) is zero and equation (13) becomes

∇×V = 0, (17)

which is the condition of irrotationality. So, equation (13)
describes both the vortex-state and the irrotationality-
state.

In the theory of δ function of the function Φ(x)
[10,11], one can prove that

δ2(Φ) =
N∑
i=1

βiηi

∫
Li

δ3(x− xi(l))

D
(
Φ
u

)
Σi

dl, (18)

where

D

(
Φ

u

)
Σi

=

(
1

2
εjkεmn

∂Φm

∂uj
∂Φn

∂uk

)
. (19)

Li is the ith singular string where Ψ = 0 and Σi is a planar
element where u = (u1, u2) are the intrinsic coordinates.
We stress that Σi is normal to Li at point xi(l). The
positive integer βi is the Hopf index of φ mapping and

ηi = sgn

[
D

(
Φ

u

)
Σi

]
(20)

is the Brouwer degree of φ mapping. The meaning of βi
is that when the point x covers the neighborhood of the
zero xi on Σi once, the vector field Φ covers the corre-
sponding region βi times. Using equations (14, 19) as well
as following the φ-mapping topological current theory, we
can prove [

D

(
Φ

x

)/
D

(
Φ

u

)
Σi

]
xi(l)

=
dxi
dl
, (21)

then from equations (18, 21) we have

δ2(Φ)D

(
Φ

x

)
=

N∑
i=1

βiηi

∫
Li

dxiδ
3(x− xi). (22)

Direct substitution of equation (22) into equation (13)
leads to the topological structure of vorticity:

∇×V =
h

m

N∑
i=1

βiηi

∫
Li

dxiδ
3(x− xi). (23)

It is obvious to see that equation (23) represents N iso-
lated vortices of which the ith vortex is charged with the
topological charge βiηi.
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3 Bifurcation of vortex line

The above discussions are based on the condition that only
one of the Jacobians Dj (Φ/x) (j = 1, 2, 3) can be zero at
some points along Li. When two of them are zero at some
points along Li, it is shown that there exist the crucial
cases of branch process. We call these points bifurcation
points, which are determined by

Φ1(x, y, z) = 0,

Φ2(x, y, z) = 0,
(24)

and

D3

(
Φ

x

)
= 0, D1

(
Φ

x

)
= 0. (25)

We denote one of the bifurcation points along Li as
x∗i = xi(l

∗) = (x∗i , y
∗
i , z
∗
i ). These two restrictive condi-

tions (25) will lead to an important fact that the func-
tional relationship between z and x is not unique in the
neighborhood of x∗i . In our vorticity topological current
theory, this fact is easily seen from

dx

dz
=

D1

(
Φ

x

)
D3

(
Φ

x

)
∣∣∣∣∣∣∣∣
x∗i

(26)

which under equation (25) directly shows that the direc-
tion of the integral curve of equation (26) is indefinite
at x∗i . Therefore the very point x∗i is called a bifurcation
point of the condensate wave function. With the aim of
finding the different directions of all branch curves at the
bifurcation point, we suppose that

∂Φ1

∂y

∣∣∣∣
x∗i

6= 0. (27)

From Φ1(x, y, z) = 0, the implicit function theorem says
that there exists one and only one functional relationship

y = y(x, z). (28)

Substituting equation (28) into Φ1, we have

Φ1(x, y(x, z), z) ≡ 0

which gives

∂Φ1

∂y
fyx = −

∂Φ1

∂x
,

∂Φ1

∂y
fyz = −

∂Φ1

∂z
,

∂Φ1

∂y
fyxx = −2

∂2Φ1

∂y∂x
fyx −

∂2Φ1

∂y2
(fyx )2 −

∂2Φ1

∂x2
,

∂Φ1

∂y
fyxz = −

∂2Φ1

∂y∂z
fyx −

∂2Φ1

∂y∂x
fyz −

∂2Φ1

∂y2
fyz f

y
x −

∂2Φ1

∂x∂z
,

∂Φ1

∂y
fyzz = −2

∂2Φ1

∂y∂z
fyz −

∂2Φ1

∂y2
(fyz )2 −

∂2Φ1

∂z2
,

(29)

where the partial derivatives are

fyx =
∂y

∂x
, fyz =

∂y

∂z
, fyxx =

∂2y

∂x2
,

fyxz =
∂2y

∂x∂z
, fyzz =

∂2y

∂z2
·

From these expressions the values of fyx , f
y
z , f

y
xx, f

y
xz and

fyzz at x∗i can be calculated.
In order to explore the behavior of vortex lines

at the bifurcation points, let us investigate the Taylor
expansion of

F (x, z) = Φ2(x, y(x, z), z) (30)

in the neighborhood of x∗i , which according to
equation (24) must vanish at the bifurcation point, i.e.

F (x∗i ) = 0. (31)

From equation (30), the first order partial derivatives of
F (x, z) with respect to x and z can be expressed by

∂F

∂x
=
∂Φ2

∂x
+
∂Φ2

∂y
fyx ,

∂F

∂z
=
∂Φ2

∂z
+
∂Φ2

∂y
fyz . (32)

By making use of equations (29, 32) and Cramer’s rule,
we can prove that the two restrictive conditions (25) can
be rewritten as

D3

(
Φ

x

)∣∣∣∣
x∗i

=

(
∂F

∂x

∂Φ1

∂y

)∣∣∣∣
x∗i

= 0,

D1

(
Φ

x

)∣∣∣∣
x∗i

=

(
∂F

∂z

∂Φ1

∂y

)∣∣∣∣
x∗i

= 0,

which give

∂F

∂x

∣∣∣∣
x∗i

= 0,
∂F

∂z

∣∣∣∣
x∗i

= 0 (33)

by considering equation (27). The second order partial
derivatives of the function F are found out to be

∂2F

∂x2
=
∂2Φ2

∂x2
+ 2

∂2Φ2

∂y∂x
fyx +

∂Φ2

∂y
fyxx +

∂2Φ2

∂y2
(fyx )2

∂2F

∂x∂z
=
∂2Φ2

∂x∂z
+
∂2Φ2

∂y∂x
fyz +

∂2Φ2

∂y∂z
fyx

+
∂Φ2

∂y
fyxz +

∂2Φ2

∂y2
fyxf

y
z

∂2F

∂z2
=
∂2Φ2

∂z2
+ 2

∂2Φ2

∂y∂z
fyz +

∂Φ2

∂y
fyzz +

∂2Φ2

∂y2
(fyz )2

which at x∗i are denoted by

A =
∂2F

∂x2

∣∣∣∣
x∗i

, B =
∂2F

∂x∂z

∣∣∣∣
x∗i

, C =
∂2F

∂z2

∣∣∣∣
x∗i

. (34)
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Fig. 1. Bifurcation solution for equation (37): two branch
curves intersect with different directions at the bifurcation
point.

Then, from equations (31, 33, 34), we obtain the Taylor
expansion of F (x, z) at x∗i :

F (x, z) =
1

2
A(x−x∗i )

2 +B(x−x∗i )(z− z
∗
i ) +

1

2
C(z− z∗i )2

which by equation (30) is the behavior of Φ2 in the neigh-
borhood of x∗i . Because of the second equation of (24),
we get

A(x− x∗i )
2 + 2B(x− x∗i )(z − z

∗
i ) + C(z − z∗i )2 = 0

which leads to

A

(
dx

dz

)2

+ 2B
dx

dz
+ C = 0 (35)

and

C

(
dz

dx

)2

+ 2B
dz

dx
+A = 0. (36)

The solutions of equation (35) or (36) give different direc-
tions of the branch curves at the bifurcation point. There
are four possible cases.

• Case 1 (A 6= 0): for ∆ = 4(B2 −AC) > 0, from equa-
tion (35) we get two different directions

dx

dz

∣∣∣∣∣1,2 =
−B ±

√
B2 −AC

A
, (37)

which is shown in Figure 1, where two branch curves
intersect with different directions.
• Case 2 (A 6= 0): for ∆ = 4(B2 −AC) = 0, from equa-

tion (35) we get only one direction

dx

dz

∣∣∣∣1,2 = −
B

A
· (38)

which includes three important cases. One, two branch
curves tangentially contact (see Fig. 2a). Two, two
curves merge into one curve (see Fig. 2b). Three, one
curve resolves into two curves (see Fig. 2c).

(a)

(b)

(c)

Fig. 2. Bifurcation solutions for equation (38). Vortex lines
have the same direction when they cross. (a) Two branch
curves tangentially contact at the bifurcation point, i.e. two
vortex lines tangentially contact at the bifurcation point. (b)
Two curves merge into one curve at the bifurcation point, i.e.
two vortex lines merge into one vortex line at the bifurcation
point. (c) One curve resolves into two curves at the bifurcation
point, i.e. one vortex line splits into two vortex lines at the
bifurcation point.

• Case 3 (A = 0, C 6= 0): for ∆ = 4(B2−AC) = 0, from
equation (36) we have

dz

dx

∣∣∣∣
1,2

=
−B ±

√
B2 −AC

C
= 0, −

2B

C
· (39)

This case is shown in Figure 3.
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(a)

(b)

Fig. 3. Two important cases of equation (39). (a) One vortex
line splits into three vortex lines at the bifurcation point. (b)
Three vortex lines merge into one vortex line at the bifurcation
point.

• Case 4 (A = C = 0): equations (35, 36) gives respec-
tively

dx

dz
= 0,

dz

dx
= 0. (40)

This case shows that two curves intersect normally at
the bifurcation point, which is similar to case 3 : (a)
three vortex lines merge into one vortex line at the
bifurcation point; (b) one vortex line splits into three
vortex lines at the bifurcation point.

The remainder component dy/dz can be given by

dy

dz
= fyx

dx

dz
+ fyz

where partial derivative coefficients fyx and fyz have been
calculated in equation (29).

Now, the topological structure of vortex lines is de-
tailed in the neighborhoods of the bifurcation points of
the condensate wave function. Besides the crossing of vor-
tex lines, i.e. two vortex lines cross at the bifurcation point
(see Figs. 1 and 2a), splitting and merging of vortex lines
are also included. When a multicharged vortex line pass
the bifurcation point, it may split into several vortex lines
along different branch curves (see Figs. 2c and 3a). On
the contrary, several vortex lines can merge into one vor-
tex line at the bifurcation point (see Figs. 2b and 3b). The
continuity equation for the condensate (9) shows the sum
of the topological charge of final vortex line(s) must be
equal to that of the initial vortex line(s) at the bifurca-
tion point, i.e. ∑

f

βlf ηlf =
∑
i

βliηli (41)

for fixed l.
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